February 2000

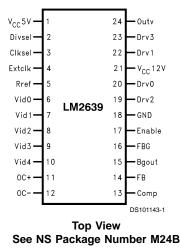
LM2639 5-Bit Programmable, High Frequency Multi-phase PWM Controller

General Description

The LM2639 provides an attractive solution for power supplies of high power microprocessors (such as Pentium II[™], M II[™], K6[™]-2, K6[™]-3, etc.) exhibiting ultra fast load transients. Compared to a conventional single-phase supply, an LM2639 based multi-phase supply distributes the thermal and electrical loading among components in multiple phases and greatly reduces the corresponding stress in each component. The LM2639 can be programmed to control either a 3-phase converter or a 4-phase converter. Phase shift among the phases is 120° in the case of three phase and 90° with four-phase. Because the power channels are out of phase, there can be significant ripple cancellation for both the input and output current, resulting in reduced input and output capacitor size. Due to the nominal operating frequency of 2 MHz per phase, the size of the output inductors can be greatly reduced which results in a much faster load transient response and a dramatically shrunk output capacitor bank. Microprocessor power supplies with all surface mount components can be easily built.

The internal high speed transconductance amplifier guarantees good dynamic performance. The output drive voltages can be adjusted through a resistor divider to control switching loss in the external FETs.

The internal master clock frequency of up to 8 MHz is set by an external reference resistor. An external clock of 10 MHz can also be used to drive the chip to achieve frequency control and multi-chip operation. The LM2639 also provides input under-voltage lock-out with hysteresis and input over-current protection.


Features

- Ultra fast load transient response
- Enables all surface-mount-design
- Selectable 2, 3, 4 phase operation
- Clock frequency from 40 kHz to 10 MHz
- Precision load current sharing
- 5-bit programmable from 3.5V to 1.3V
- VID code compatible to VRM 8.X specification
- Output voltage is 2.0V for VID code 11111
- Selectable internal or external clock
- Digital 16-step soft start
- Input under-voltage lock-out, over-current protection

Applications

- Servers and workstations
- High current, ultra-fast transient microprocessors

Pin Configuration

24-Pin Plastic SOIC

M II[™] is a trademark of Cyrix Corporation a wholly owned subsidiary of National Semiconductor Corporation. Pentium II[™] is a trademark of Intel Corporation. K6[™] is a trademark of Advanced Micro Devices, Inc.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

V _{CC} 5V	7V
V _{CC} 12V	20V
Junction Temperature	125°C
Power Dissipation (Note 2)	1.6W

Storage Temperature	–65°C to +150°C
ESD Susceptibility (Note 8)	2 kV
Soldering Time, Temperature	10 sec., 300°C

Operating Ratings (Note 1)

V _{cc}	4.75V to 5.25V
Junction Temperature Range	0°C to 70°C

Electrical Characteristics

 $V_{CC}5V = 5V$, $V_{CC}12V = 12V$ unless otherwise specified. Typicals and limits appearing in plain type apply for $T_A = T_J = +25^{\circ}C$. Limits appearing in **boldface** type apply over the entire operating temperature range.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Vcc5V	V _{CC} 5V Pin Voltage		4.5	5.0	5.5	V
Vcc12V	V _{cc} 12V Pin Voltage		10.0	12.0	18.0	V
V _{DACOUT}	5-bit DAC Output Voltage	(Note 3)	<i>N</i> –1%	Ν	<i>N</i> +1%	
			<i>N</i> –1.5%	N	N+1.5%	V
I _{CC} 12V	Quiescent V _{CC} 12V Current	Enable = 5V, VID = 00001, DRV Outputs Floating		1.3	3	mA
I _{CC} 5V	Operating V _{CC} 5V Current	V _{OUT} = 2.00V		4.3	8	mA
V _{REF}	Rref Pin Voltage			1.225		V
V _{INL}	Vid0:4, Clksel, Divsel, and	Logic Low (Note 4)		1.8	1.5	V
V _{INH}	Enable Pins Logic Threshold	Logic High (Note 5)	3.5	2.8		V
	Vid0:4 and Enable Pins Internal Pullup Current	The Corresponding Pin = 0V	60	100	140	μA
I _{INL}	Clksel, Divsel Pins Internal Pullup Current	The Corresponding Pin – 0v	-10	0	10	μΑ
	Gate Driver Resistance When Sinking Current	I_{SINK} = 50 µA, V_{CC} 12V = 14V		12		Ω
V _{DRV}	DRV0:3 Output Voltage	I_{DRV} = 10 mA, V_{CC} 12V = 14V, OutV = 12V or 5V	OutV – 0.3V	OutV	OutV + 0. 3V	V
t _{fall}	DRV0:3 Fall Time	(Note 6)		7		ns
I _{SRC}	DRV0:3 Source Current	$DRV0:3 = 0V, V_{CC}12V = 14V,$ OutV = 5V	40	60		mA
I _{SINK}	DRV0:3 Sink Current	DRV0:3 = 5V, V _{CC} 12V = 14V, OutV = 5V	90	160	250	mA
	B _{gOUT} Voltage	Current Limit Not Activated		4		V
		Current Limit Activated		0		V
I _{FB}	FB Pin Bias Current	FB = 2V		30		nA
	B _{gOUT} Sink Current	$B_{qOUT} = 1V$	1.0	2.4	5	mA
F _{osc}	Oscillator Frequency	8.02kΩ from Rref Pin to Ground	7.0	8.0	8.7	MHz
Δ_{D}	DRV0:3 Duty Cycle Match	Duty Cycle = 50%	-1		+1	%
Δ_{ph}	DRV0:3 Phase Accuracy	Duty Cycle = 50%, F _{clock} = 8 MHz	-1		+1	Deg
T _{off}		Divide by 4		22		0/
T _{off}	- PWM Off time	Divide by 3		22		%
OutV	Drive Voltage Range	Output Freq.= 2MHz, $V_0 = 2.00V$	0	12	Vcc12	V

Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{OCC_CM}	Over-current Comparator Common Mode Range		3		12	V
IB_OC+	OC+ Input Bias Current	V _{IN} = 5V, OC+ = 5V, OC- = 4V	100	145	200	μΑ
IB_OC-	OC- Input Bias Current	V _{IN} = 5V, OC+ = 6V, OC- = 5V	85	125	165	μΑ
V _{os_occ}	Over-current Comparator Input	$V_{IN} = 5V$	2	16	42	- mV
	Offset Voltage	V _{IN} = 12V		21		
D _{MAX}	Maximun Duty Cycle	FB = 0V		78		%
gm	Error Amplifier Transconductance			1.36		mmho
V _{ramp}	Ramp Signal Peak-to-Peak Amplitude			2		V
I _{comp}	COMP Pin Source Current		250	400	550	μA
I _{comp}	COMP Pin Sink Current		160	280	400	μA
V _{comp_hi}	COMP Pin High Clamp			2.9		V
V _{comp_lo}	COMP Pin Low Clamp			0.19		V
V _{POR}	Power On Reset Trip Point	Vcc5V Pin Voltage Rising		4.0		V
		Vcc5V Pin Voltage Falling		3.6		
	Vcc12V Minimum Working Voltage	(Note 7)		3.8		V
t _{ss}	Soft Start Delay	F _{OSC} = 8MHz		1.6		ms

 $V_{CC}5V = 5V$, $V_{CC}12V = 12V$ unless otherwise specified. Typicals and limits appearing in plain type apply for $T_A = T_J = +25^{\circ}C$. Limits appearing in **boldface** type apply over the entire operating temperature range.

Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. **Operating ratings** do not imply guaranteed performance limits. **Note 2:** Maximum allowable power dissipation is a function of the maximum junction temperature, T_{JMAX} , the junction-to-ambient thermal resistance, θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation at any ambient temperature is calculated using: $P_{MAX} = (T_{JMAX} - T_A)\theta_{JA}$. The junction-to-ambient thermal resistance, θ_{JA} , for LM2639 is 78°C/W. For a T_{JMAX} of 150°C and T_A of 25°C, the maximum allowable power dissipation is 1.6W. **Note 3:** The letter **N** stands for the typical output voltages appearing in *italic boldface* type in *Table 1*.

Note 4: Max value of logic low means any voltage below this value is guaranteed to be taken as logic low whereas a voltage higher than this value is not guaranteed to be taken as a logic low.

Note 5: Min value of logic high means any voltage above this value is guaranteed to be taken as logic high whereas a voltage lower than this value is not guaranteed to be taken as a logic high.

Note 6: When driving bipolar FET drivers in the typical application circuit.

Note 7: When Vcc12V pin goes below this voltage, all DRV pins go to 0V.

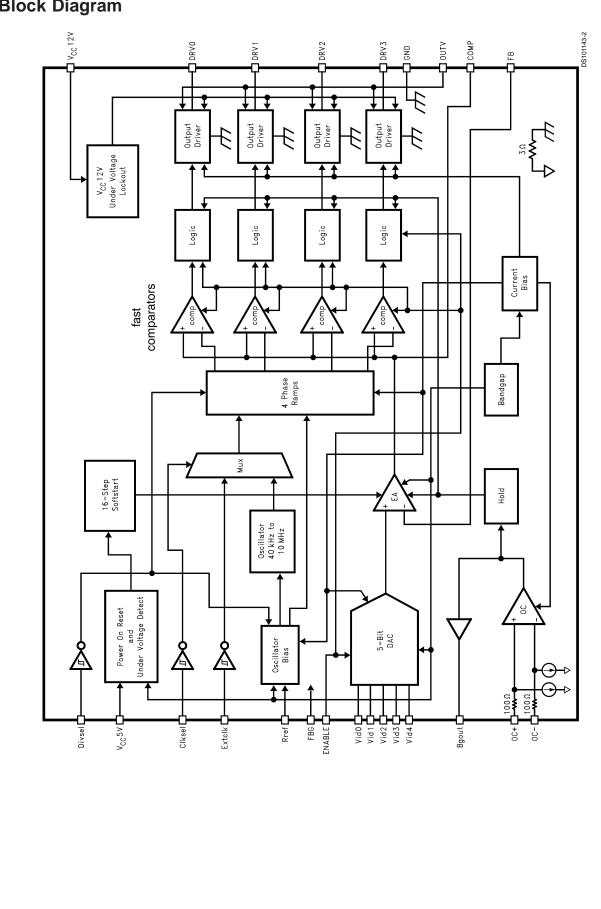
Note 8: ESD ratings for pins DRV0, DRV1, DRV2 and DRV3 is 1kV. ESD rating for all other pins is 2kV.

LM2639

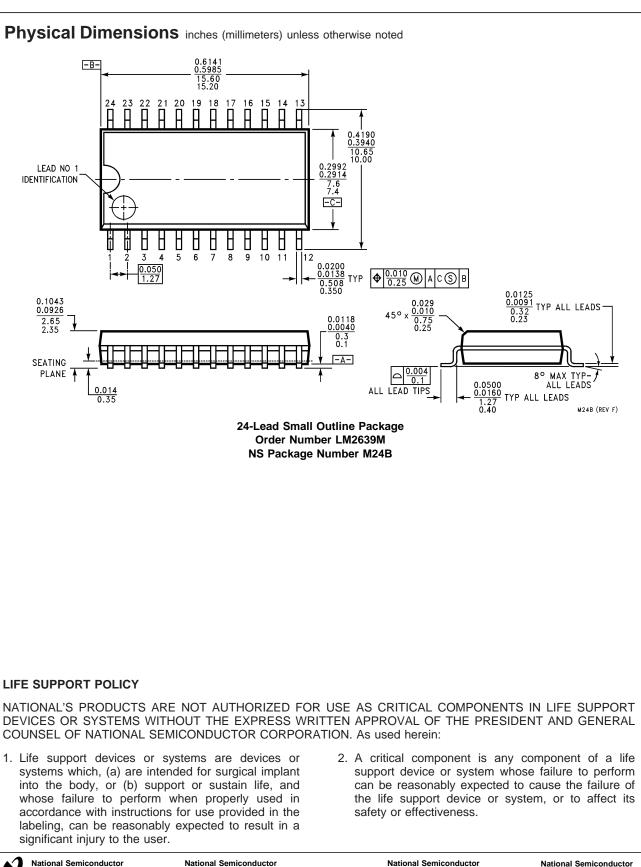
LM2639

Electrical Characteristics (Continued)

	TABLE 1. 5-Bit DAC Output V			
Symbol	Parameter	Conditions	Typical	Units
V _{dacout}	5-Bit DAC Output Voltages for Different VID Codes	VID4:0 = 01111	1.30	V
		VID4:0 = 01110	1.35	1
		VID4:0 = 01101	1.40	1
		VID4:0 = 01100	1.45	1
		VID4:0 = 01011	1.50	1
		VID4:0 = 01010	1.55	1
		VID4:0 = 01001	1.60	1
		VID4:0 = 01000	1.65	1
		VID4:0 = 00111	1.70	1
		VID4:0 = 00110	1.75	1
		VID4:0 = 00101	1.80	1
		VID4:0 = 00100	1.85	1
		VID4:0 = 00011	1.90	1
		VID4:0 = 00010	1.95	1
		VID4:0 = 00001	2.00	1
		VID4:0 = 00000	2.05	1
		VID4:0 = 11111	2.0	1
		VID4:0 = 11110	2.1	1
		VID4:0 = 11101	2.2	1
		VID4:0 = 11100	2.3	1
		VID4:0 = 11011	2.4	1
		VID4:0 = 11010	2.5	1
		VID4:0 = 11001	2.6	1
		VID4:0 = 11000	2.7	1
		VID4:0 = 10111	2.8	1
		VID4:0 = 10110	2.9	1
		VID4:0 = 10101	3.0	1
		VID4:0 = 10100	3.1	1
		VID4:0 = 10011	3.2	1
		VID4:0 = 10010	3.3	1
		VID4:0 = 10001	3.4	1
		VID4:0 = 10000	3.5	1


TABLE 1. 5-Bit DAC Output Voltage Table

Pin	Pin Name	Pin Function
1	Vcc5V	Supply Voltage Input (5V nominal)
2	Divsel	Selects Phase Mode. Logic low selects 4 phase. Logic high selects 3 phase. 2 phase operation is achieved by using 2 outputs in 4 phase mode.
3	Clksel	Clock Select: Logic high selects internal clock. Logic low selects external clock.
4	Extclk	External Clock Input. Output frequency = Clock Input / No. of Phases. Connect to Vcc5V to select internal clock.
5	Rref	Connects to external reference resistor. Sets the operating frequency of the internal clock and the ramp time for the PWM. Reference voltage at this pin is 1.26V.
6	Vid0	5-Bit DAC Input (LSB).
7	Vid1	5-Bit DAC Input.
8	Vid2	5-Bit DAC Input.
9	Vid3	5-Bit DAC Input.
10	Vid4	5-Bit DAC Input (MSB)
11	OC+	Over-current Comparator. Non-inverting input.
12	OC-	Over-current Comparator. Inverting input.
13	COMP	Compensation Pin. This is the output of the internal transconductance amplifier. Compensation network should be connected between this pin and feedback ground FBG.
14	FB	Feedback Input. Normally Kelvin connected to supply output.
15	Bgout	Current Limit Flag. Goes to logic low when current limit is activated. When over-current condition is removed, this pin is weakly pulled up to Vcc5V.
16	FBG	Feedback Ground. This pin should be connected to the ground at the supply output.
17	ENABLE	Output Enable Pin. Tie to logic high to enable and logic low to disable.
18	GND	Power Ground Pin.
19	DRV2	Phase 2 Output.
20	DRV0	Phase 0 Output.
21	Vcc12V	Supply Voltage for FET Drivers DRV0:3.
22	DRV1	Phase 1 Output.
23	DRV3	Phase 3 Output.
24	OutV	Sets the maximum DRV0:3 drive voltage to reduce switching loss in external FET's.


LM2639

LM2639

Block Diagram

Corporation Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com www.national.com National Semiconductor Europe Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.